MediaWiki API result
This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.
Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.
See the complete documentation, or the API help for more information.
{
"compare": {
"fromid": 1,
"fromrevid": 1,
"fromns": 0,
"fromtitle": "Azala",
"toid": 2,
"torevid": 2,
"tons": 0,
"totitle": "Pierre de Fermat",
"*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">1. lerroa:</td>\n<td colspan=\"2\" class=\"diff-lineno\">1. lerroa:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><strong>MediaWiki instalatu da</del>.<del class=\"diffchange diffchange-inline\"></strong></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Image:Pierre de Fermat.jpg|thumb|Pierre de Fermat]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'''Pierre de Fermat''' [[(1601-1665)]]Frantzian jaio eta hil zen.[[matematikari]] nagusia eta [[legelari]] izan zen. [[Touluse]]ko [[Parlamentuan]] eta [[Frantzia]]ko hegoaldean abokatua izan zen. Oso garrantzitsua izan zen [[kalkulo]] modernoan eta [[geometria analitikoa]]n</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange\">Ikusi [https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents Erabiltzailearen Gida] wiki softwarea erabiltzen hasteko informazio gehiagorako.</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">== Nola hasi ==</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Baina Fermat famatuagoa da beste kontzeptuagatik, hain zuzen ere, bere [[Enigmaga]]tik. Hau [[Pitagoras teorema]]ren abstrakzio bat da, ere ezagutua [[Fermaten azken teorema]]\u00a0 bezala. Matematikariei urte asko kostatu zitzaien teorema argitzea, baina azkenean [[1995]]ean lortu zen. [[Descartes]] matematikariaz gain, Fermat XVII.mendean nagusiena izan zen.</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>[<del class=\"diffchange diffchange-inline\">https://www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special:MyLanguage/Manual:Configuration_settings Konfigurazio balioen zerrenda]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">*</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"> </del>[<del class=\"diffchange diffchange-inline\">https://www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Manual:FAQ MediaWiki FAQ </del>(<del class=\"diffchange diffchange-inline\">MediaWikin Maiz egindako galderak</del>)<del class=\"diffchange diffchange-inline\">]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https://lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia.org/postorius</del>/<del class=\"diffchange diffchange-inline\">lists/mediawiki</del>-<del class=\"diffchange diffchange-inline\">announce</del>.<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia.org</del>/ <del class=\"diffchange diffchange-inline\">MediaWikiren argitalpenen posta zerrenda</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Haren teorema batzuk ==</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">https://www.mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Localisation#Translation_resources Aurkitu MediaWiki zure hizkuntzan]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* [https:/</del>/<del class=\"diffchange diffchange-inline\">www.mediawiki.org</del>/<del class=\"diffchange diffchange-inline\">wiki/Special:MyLanguage/Manual:Combating_spam Zure wikian spam-a nola borrokatzen ikasi]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">1)'''[</ins>[<ins class=\"diffchange diffchange-inline\">Fermat-en espirala]]'''</ins>.<ins class=\"diffchange diffchange-inline\">Ere ezagutua [[espiral parabolikoa]] bezala</ins>. <ins class=\"diffchange diffchange-inline\">Kurba bat da eta ekuazio honi erantzuten dio: </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><math>r = \\theta^{1</ins>/<ins class=\"diffchange diffchange-inline\">2}<</ins>/<ins class=\"diffchange diffchange-inline\">math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">2) '''[[Zenbaki lagunak]]''' . Bi zenbaki osoak dira([[a]],[</ins>[<ins class=\"diffchange diffchange-inline\">b]])</ins>.<ins class=\"diffchange diffchange-inline\">a b-ren bi zatitzaileen gehiketa da, eta b a-ren bi zatitzaileena</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Adibide bat hau da</ins>: (<ins class=\"diffchange diffchange-inline\">220, 284</ins>)</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>*<ins class=\"diffchange diffchange-inline\">22o zenbakiko zatitzaileak 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 eta 110 dira, 284 delarik bere emaitza gehiketan.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*284 zenbakiko zatitzaileak\u00a0 1, 2, 4, 71 eta 142 dira, haien gehiketa egitean 220 ateratzen delarik.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">3) '''[</ins>[<ins class=\"diffchange diffchange-inline\">Fermat-en azken teorema]]''' </ins>.<ins class=\"diffchange diffchange-inline\">Ere ezagutua [[Fermat</ins>/<ins class=\"diffchange diffchange-inline\">Wiles</ins>-<ins class=\"diffchange diffchange-inline\">eko teorema]] bezala</ins>. <ins class=\"diffchange diffchange-inline\">Matematikaren historiako [[teorema]] nagusienetariko bat da</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">n zenbaki osoa bada eta 2 baino handiagoa, hau da, (<math>n<</ins>/<ins class=\"diffchange diffchange-inline\">math> > 2),bada, orduan, ez dira zenbaki osoak ([[x]], [[y]</ins>] <ins class=\"diffchange diffchange-inline\">eta [</ins>[<ins class=\"diffchange diffchange-inline\">z]]) existitzen berdintza hori lortuko duenak</ins>. <ins class=\"diffchange diffchange-inline\">Era matematikoan errepresentatuta</ins>:</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><center><math>z^n = x^n + y^n<</ins>/<ins class=\"diffchange diffchange-inline\">math><</ins>/<ins class=\"diffchange diffchange-inline\">center></ins></div></td></tr>\n"
}
}